Statistical analysis of the transmission based on the DMPK equation: An application to Pb nano-contacts

نویسنده

  • Vı́ctor A. Gopar
چکیده

The density of the transmission eigenvalues of Pb nano-contacts has been estimated recently in mechanically controllable break-junction experiments. Motivated by these experimental analyses, here we study the evolution of the density of the transmission eigenvalues with the disorder strength and the number of channels supported by the ballistic constriction of a quantum point contact in the framework of the Dorokhov-Mello-Pereyra-Kumar equation. We find that the transmission density evolves rapidly into the density in the diffusive metallic regime as the number of channels Nc of the constriction increase. Therefore, the transmission density distribution for a few Nc channels comes close to the known bimodal density distribution in the metallic limit. This is in agreement with the experimental statistical-studies in Pb nano-contacts. For the two analyzed cases, we show that the experimental densities are seen to be well described by the corresponding theoretical results. PACS. 0 5.60.Gg, 72.10.-d, 73.63.-b

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of the DMPK equation beyond quasi one dimension

Electronic transport properties in a disordered quantum wire are very well described by the DorokhovMello-Pereyra-Kumar ~DMPK! equation, which describes the evolution of the transmission eigenvalues as a function of the length of a multichannel conductor. However, the DMPK equation is restricted to quasi-onedimensional systems only. We derive a generalized DMPK equation for higher dimensions, c...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Design of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis

Recently, Carbon Nano (CN) structures are widely used in medical applications, especially the detection and treatment of cancer disease. Among various types of CNs, Carbone Nano Tubes (CNTs) attracted many researchers' attention to consider them toward clinical application. Regarding the intrinsic structure of CNTs, they can be used widely in drug delivery applications. Functionalized CNTs and ...

متن کامل

The Potential of Date-palm Leaf Ash as Low-cost Adsorbent for the Removal of Pb(II) Ion from Aqueous Solution

This study investigated the feasibility of Date-palm) Phoenix dactylifera (Leaf Ash (DLA) (an inexpensive agricultural-byproduct) as an application to adsorb Pb(II) ions. An adsorption process was carried out to evaluate initial concentration Pb(II) ions, adsorbent dose, contact time, pH and temperature on the systematic removal of Pb(II). The effects were examined and results showed that remov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008